Search results for "Coupled Cluster Calculations"

showing 10 items of 16 documents

Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using cholesky dec…

2004

A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model using Cholesky decomposition of the two-electron integrals is presented. Significantly reducing storage demands and computational effort without sacrificing accuracy compared to the conventional model, the algorithm is well suited for large-scale applications. Extensive basis set convergence studies are presented for the static and frequency-dependent electric dipole polarizability of benzene and C60, and for the optical rotation of CNOFH2 and (−)-trans-cyclooctene (TCO). The origin-dependence of the optical rotation is calculated and shown to persist for CC2 even at basis set convergence. …

PolarisabilityChemistryUNESCO::FÍSICAGeneral Physics and AstronomyComputational physicsDipolePhysics and Astronomy (all)Coupled clusterCoupled cluster calculationsFullerene compoundsOptical rotation ; Coupled cluster calculations ; Organic compounds ; Polarisability ; Fullerene compoundsComputational chemistryPolarizability:FÍSICA [UNESCO]Convergence (routing)Organic compoundsOptical rotationPhysical and Theoretical ChemistryLinear response theoryOptical rotationBasis setCholesky decomposition
researchProduct

Ab initio determination of the ionization potentials of DNA and RNA nucleobases

2006

Quantum chemical high level ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute vertical and adiabatic ionization potentials of the five canonical DNA and RNA nucleobases: uracil, thymine, cytosine, adenine, and guanine. Several states of their cations have been also calculated. The present results represent a systematic compendium of these magnitudes, establishing theoretical reference values at a level not reported before, calibrating computational strategies, and guiding the assignment of the features in the experimental photoelectron spectra. Daniel.Roca@uv.es Mercedes.Rubio@uv.es Manuela.Merchan@uv.es Luis.Serrano@uv.es

DNA ; Macromolecules ; Ionisation potential ; Photoelectron spectra ; Molecular biophysics ; Ab initio calculations ; Coupled cluster calculations ; Perturbation theoryGuanineGuaninePhotochemistryAb initioBiophysicsGeneral Physics and AstronomyIonisation potentialPerturbation theoryNucleobasechemistry.chemical_compoundCytosinePhotoelectron spectraCoupled cluster calculationsAb initio quantum chemistry methodsComputational chemistryIonizationPhysics::Atomic and Molecular ClustersPhysical and Theoretical ChemistryUracil:FÍSICA::Química física [UNESCO]IonsPhysics::Biological PhysicsQuantitative Biology::BiomoleculesBase CompositionChemistry PhysicalAdenineUracilDNAMolecular biophysicsQuantitative Biology::GenomicsThymineUNESCO::FÍSICA::Química físicachemistryMacromoleculesCalibrationQuantum TheoryRNAAb initio calculationsCytosineSoftwareThymine
researchProduct

Size-intensive decomposition of orbital energy denominators

2000

We introduce an alternative to Almlöf and Häser’s Laplace transform decomposition of orbital energy denominators used in obtaining reduced scaling algorithms in perturbation theory based methods. The new decomposition is based on the Cholesky decomposition of positive semidefinite matrices. We show that orbital denominators have a particular short and size-intensive Cholesky decomposition. The main advantage in using the Cholesky decomposition, besides the shorter expansion, is the systematic improvement of the results without the penalties encountered in the Laplace transform decomposition when changing the number of integration points in order to control the convergence. Applications will…

Laplace transformIntegrationGeneral Physics and AstronomyMinimum degree algorithmOrbital calculations ; Perturbation theory ; Convergence of numerical methods ; Integration ; Coupled cluster calculationsPositive-definite matrixPerturbation theoryUNESCO::FÍSICA::Química físicaOrbital calculationsSpecific orbital energyPhysics and Astronomy (all)Coupled cluster calculationsComputational chemistryConvergence (routing)Decomposition (computer science)Convergence of numerical methodsApplied mathematicsPhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Cholesky decompositionMathematics
researchProduct

A computational study of some electric and magnetic properties of gaseous BF3 and BCl3

2005

We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities—expressed as quadratic and cubic frequency-dependent response functions—are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory f…

BirefringenceBirefringenceCondensed matter physicsChemistryElectron correlationsGeneral Physics and AstronomyMagnetic susceptibilityBoron compounds; Polarisability Quadrupole moments ; HF calculations ; Density functional theory ; Coupled cluster calculations ; Electron correlations ; Magnetic anisotropy ; Magnetic susceptibility ; BirefringenceUNESCO::FÍSICA::Química físicaMagnetic susceptibilityMagnetic anisotropyDipoleAtomic orbitalBoron compoundsCoupled cluster calculationsQuadrupolePolarisability Quadrupole momentsDensity functional theoryDensity functional theoryPhysical and Theoretical ChemistryAtomic physicsAnisotropy:FÍSICA::Química física [UNESCO]HF calculationsMagnetic anisotropy
researchProduct

A theoretical study of the low-lying excited states of thieno[3,4-b]pyrazine

2009

The low-lying electronic excited states of thieno[3,4-b]pyrazine have been studied using the multiconfigurational second-order perturbation CASPT2 theory with extended atomic natural orbital basis sets. The CASPT2 results allow for a full interpretation of the electronic absorption and emission spectra and provide valuable information for the rationalization of the experimental data. The nature, position, and intensity of the spectral bands have been analyzed in detail. A preliminary comparative study of the ground-state geometry of thieno[3,4-b]pyrazine has been performed at the coupled cluster single and doubles and density functional theory levels using a variety of correlation-consisten…

PyrazineOrganic compounds perturbation theoryUNESCO::FÍSICAGeneral Physics and AstronomySpectral bandsRydberg statesFluorescenceGround statesCoupled cluster calculations ; Density functional theory ; Fluorescence ; Ground states ; Organic compounds perturbation theory ; Rydberg stateschemistry.chemical_compoundCoupled clusterchemistryCoupled cluster calculations:FÍSICA [UNESCO]Excited stateDensity functional theoryMoietyDensity functional theoryEmission spectrumPhysical and Theoretical ChemistryAtomic physicsGround state
researchProduct

Study of the benzene⋅N2 intermolecular potential-energy surface

2003

The intermolecular potential-energy surface pertaining to the interaction between benzene and N2 is investigated theoretically and experimentally. Accurate intermolecular interaction energies are evaluated for the benzene–N2 van der Waals complex using the coupled cluster singles and doubles including connected triples [CCSD(T)] method and the aug-cc-pVDZ basis set extended with a set of 3s3p2d1f1g midbond functions. After fitting the energies to an analytic function, the intermolecular Schrödinger equation is solved to yield energies, rotational constants, and Raman-scattering coefficients for the lowest intermolecular levels of several benzene–N2 isotopomers. Experimentally, intermolecula…

Potential Energy SurfacesCoupled Cluster CalculationsNitrogenBinding energyGeneral Physics and AstronomyPotential Energy Functionssymbols.namesakePhysics and Astronomy (all)IsomerismQuasimoleculesRotational IsomerismPhysics::Atomic and Molecular ClustersQuantum-mechanical explanation of intermolecular interactionsRotational StatesPhysical and Theoretical ChemistryPhysics::Chemical Physics:FÍSICA::Química física [UNESCO]Basis setSchrodinger EquationChemistryOrganic CompoundsIsotope EffectsIntermolecular forceStimulated Raman ScatteringUNESCO::FÍSICA::Química físicaCoupled clustersymbolsAtomic physicsvan der Waals forceOrganic Compounds ; Nitrogen ; Quasimolecules ; Potential Energy Surfaces ; Potential Energy Functions ; Coupled Cluster Calculations ; Rotational States ; Isomerism ; Isotope Effects ; Stimulated Raman Scattering ; Rotational Isomerism ; Schrodinger EquationRaman spectroscopyRaman scattering
researchProduct

Assessment for the mean value total dressing method: Comparison with coupled cluster including triples methods for BF, NO+, CN+, C2, BeO, NH3, CH2, H…

1997

Limited previous experience with the mean value total dressing (MVTD) method had shown that MVTD energies for closed shell systems are generally better than CCSD(T) ones compared to FCI. The method, previously published as total dressing 2′(td-2′), is based on the single reference intermediate Hamiltonian theory. It is not a CC method but deals in a great part with the same physical effects that CC methods that incorporate amplitudes of triples such as CCSDT or its CCSDT-1n approaches. A number of test calculations comparing to diverse CC methods, as well as FCI and experiment when available, have been performed. The tests concern equilibrium energies in NH3 and CH2, equilibrium energies an…

Carbon compoundsGeneral Physics and AstronomyBoron compounds ; Nitrogen compounds ; Water ; Ammonia ; Ozone ; Organic compounds ; Carbon compounds ; Beryllium compounds ; Hydrogen compounds ; Silicon compounds ; Lithium ; Lithium compounds ; Carbon ; Neon compounds ; Coupled cluster calculations ; Dissociation ; Dissociation energies ; Positive ionsLithiumDissociation (chemistry)Nitrogen compoundsIonDissociation energiesOzoneCoupled cluster calculationsAmmoniaBeryllium compoundsOrganic compoundsMoleculeSilicon compoundsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Open shellChemistryNeon compoundsMean valueWaterLithium compoundsHydrogen compoundsDiatomic moleculeCarbonUNESCO::FÍSICA::Química físicaCoupled clusterAmplitudeBoron compoundsPositive ionsAtomic physicsDissociation
researchProduct

The CC3 model : An iterative coupled cluster approach including connected triples

1997

An alternative derivation of many-body perturbation theory (MBPT) has been given, where a coupled cluster parametrization is used for the wave function and the method of undetermined Lagrange multipliers is applied to set up a variational coupled cluster energy expression. In this variational formulation, the nth-order amplitudes determine the energy to order 2n+1 and the nth-order multipliers determine the energy to order 2n+2. We have developed an iterative approximate coupled cluster singles, doubles, and triples model CC3, where the triples amplitudes are correct through second order and the singles amplitudes are treated without approximations due to the unique role of singles as appro…

PhysicsMany-body problemsIterative methodIterative methodsGeneral Physics and AstronomyRelaxation (iterative method)Function (mathematics)Perturbation theoryFull configuration interactionUNESCO::FÍSICA::Química físicaPhysics and Astronomy (all)Coupled clusterCoupled cluster calculationsPerturbation theory ; Many-body problems ; Coupled cluster calculations ; Iterative methods ; Wave functions ; Variational techniquesComputational chemistryPerturbation theoryPhysical and Theoretical ChemistryPhysics::Chemical PhysicsWave function:FÍSICA::Química física [UNESCO]ParametrizationWave functionsMathematical physicsVariational techniques
researchProduct

Computational and experimental investigation of intermolecular states and forces in the benzene-helium van der Waals complex

2003

A study of the intermolecular potential-energy surface (IPS) and the intermolecular states of the perprotonated and perdeuterated benzene–He complex is reported. From a fit to ab initio data computed within the coupled cluster singles and doubles including connected triples model for 280 interaction geometries, an analytic IPS including two- to four-body atom–atom terms is obtained. This IPS, and two other Lennard-Jones atom–atom surfaces from the literature, are each employed in dynamically exact (within the rigid-monomer approximation) calculations of J = 0 intermolecular states of the isotopomers. Rotational constants and Raman-scattering coefficients for intermolecular vibrational trans…

Potential Energy SurfacesCoupled Cluster CalculationsRaman SpectraHelium Neutral AtomsOrganic Compounds ; Helium Neutral Atoms ; Intermolecular Mechanics ; Quasimolecules ; Potential Energy Surfaces ; Ab Initio Calculations ; Coupled Cluster Calculations ; Lennard-Jones Potential ; Isotope Effects ; Isomerism ; Rotational States ; Raman SpectraAb initioGeneral Physics and AstronomyIsotopomerssymbols.namesakePhysics and Astronomy (all)IsomerismAb initio quantum chemistry methodsQuasimoleculesKinetic isotope effectPhysics::Atomic and Molecular ClustersRotational StatesPhysics::Atomic PhysicsLennard-Jones PotentialPhysics::Chemical PhysicsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]ChemistryOrganic CompoundsIsotope EffectsIntermolecular forceUNESCO::FÍSICA::Química físicaCoupled clusterLennard-Jones potentialsymbolsIntermolecular MechanicsAtomic physicsvan der Waals forceAb Initio Calculations
researchProduct

Linear and nonlinear optical properties of some organoxenon derivatives

2007

We employ a series of state-of-the-art computational techniques to study the effect of inserting one or more Xe atoms in HC2H and HC4H, on the linear and nonlinear optical (L&NLO) properties of the resulting compounds. It has been found that the inserted Xe has a great effect on the L&NLO properties of the organoxenon derivatives. We analyze the bonding in HXeC2H, and the change of the electronic structure, which is induced by inserting Xe, in order to rationalize the observed extraordinary L&NLO properties. The derivatives, which are of interest in this work, have been synthesized in a Xe matrix. Thus the effect of the local field (LF), due to the Xe environment, on the properties of HXeC2…

Optics and PhotonicsNonlinear opticsXenonChemical PhenomenaCoupled cluster calculations ; Nonlinear optics ; Optical properties ; Perturbation theory ; SCF calculations ; VB calculationsGeneral Physics and AstronomyElectronic structurePerturbation theoryMatrix (mathematics)Coupled cluster calculationsComputer SimulationComplete active spacePhysical and Theoretical ChemistryPerturbation theory:FÍSICA::Química física [UNESCO]Local fieldOptical propertiesChemistryChemistry PhysicalNonlinear opticsUNESCO::FÍSICA::Química físicaNonlinear systemVB calculationsModels ChemicalNonlinear DynamicsSCF calculationsValence bond theoryAtomic physics
researchProduct